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Problem Statement and Motivation

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or stochastic
(e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.
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Problem Statement and Motivation

The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.
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Problem Statement and Motivation

Example
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Common Approaches

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

• G (xk) is a cheap, unbiased estimate for ∇f (xk)

• ak is a sequence of step sizes

(specified by the user) satisfying:

∞∑
k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .
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Common Approaches

Response Surface Methodology

• Developed by the experimental design community.

• Build models using a fixed pattern of points, for example, cubic,
spherical, or orthogonal designs among many others.

• Finding the design that constructs response surfaces approximating the
function without requiring excessive function evaluations can be difficult
for problems where the user has no prior expertise.
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Common Approaches

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points of
interest.

• Stochastic approximation modified by Dupuis, Simha (1991)

• Response surface methods modified by Chang et al. (2012)

• UOBYQA modified by Deng, Ferris (2006)

• Nelder-Mead modified by Tomick et al. (1995)

• DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling only provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.
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Our Method

Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We aim to extend the convergence results of Conn, Scheinberg, and Vicente
for trust-region methods to the stochastic case.

Similarly, we’d like the class of possible models to be general.
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Our Method

κ-fully Linear

Definition

If f ∈ LC and ∃ a vector κ = (κef , κeg ) of positive constants such that

• the error between the gradient of the model and the gradient of the
function satisfies

‖∇f (y)−∇m(y)‖ ≤ κeg∆ ∀y ∈ B(x ; ∆),

• the error between the model and the function satisfies

|f (y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x ; ∆),

we say the model is κ-fully linear on B(x ; ∆).
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Our Method

α-probabilistically κ-fully Linear

Definition

Let κ = (κef , κeg ) be a given vector of constants, and let α ∈ (0, 1). Let
B ⊂ Rn be given. A random model mk generated at the kth iteration of an
algorithm is α-probabilistically κ-fully linear on B if

P
(
mk is a κ-fully linear model of f on B

∣∣Fk−1

)
≥ α,

where Fk−1 denotes the realizations of all the random events for the first
k − 1 iterations.
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Our Method

Regression Models can be α-probabilistically κ-fully Linear

Theorem

For a given x ∈ Rn, ∆ > 0, α ∈ (0, 1),

• Y ⊂ B(x ; ∆) is strongly Λ-poised,

• The noise present in f̄ is i.i.d. with mean 0, variance σ2 <∞,

• |Y | ≥ C/∆4,

Then there exist constants κ = (κef , κeg ) (independent of ∆ and Y ) such
that the linear model m regressing Y is α-probabilistically κ-fully linear on
B(x ; ∆).
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Our Method

One Last Part

For our analysis, we need estimates of f (xk) and f (xk + sk) that are slightly
different than those provided by the model functions.

Let F 0
k and F s

k denote the sequence of estimates of f (xk) and f (xk + sk).

We need to be able to construct estimates satisfying

P
[∣∣F 0

k − f (xk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣Fk−1

]
< θ

and P
[∣∣F s

k − f (xk + sk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣∣Fk−1

]
< θ,

for any ε > 0 and θ > 0.
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Algorithm 1: A trust-region algorithm to minimize a stochastic function

Pick 0 < γdec < 1 < γinc , 0 < η, β < 1, 0 < ∆0, and α ∈ (0, 1). Set k = 0;
Start
Build a αk -probabilistically κ-fully linear model mk on B(xk ; ∆k) for some
αk ≥ α;

Compute sk = arg min
s:‖xk−s‖<∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0
k − F s

k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
k = k + 1 and go to Start;



Outline of Convergence Proof

Convergence

If the function f , noise ε, and various algorithmic constants satisfy some
assumptions, we prove that our algorithm converges almost surely to a
first-order stationary point of f .
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Outline of Convergence Proof

Convergence

Assumption

The additive noise ε observed when computing f̄ is independent and
identically distributed with mean zero and bounded variance σ2.

Assumption

On some set Ω ⊆ Rn containing all iterates visited by the algorithm,

• f is Lipschitz continuous

• ∇f is Lipschitz continuous

• f has bounded level sets
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Outline of Convergence Proof

Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1

2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where

• α is the lower bound on the probability of having a κ-fully linear model,

• γdec ∈ (0, 1) is the factor by which we decrease the trust region radius,

• γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 =⇒ α ≥ 0.9.
If γinc = 2 and γdec = 0.9 =⇒ α ≥ 0.65.
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Outline of Convergence Proof

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost surely
to a first-order stationary point of f .

• Show the sequence of trust region radii ∆k → 0 almost surely.

• Show if ∆k ever falls below some constant multiple of the model
gradient, ∆k+1 > ∆k with high probability.

• Lastly, show that, the sequence of ratios{‖∇f (xk)‖
∆k

}
is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and ∆k → 0
almost surely, this implies ‖∇f (xk)‖ → 0 almost surely.
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Numerical Results

Problem Set

53 problems of the form:

f (x) =
m∑
i=1

[(1 + σ)F s
i (x)]2

,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let tp,s be
the number of iterates required for solver s ∈ S on a problem p ∈ P to find
a function value satisfying:

f (x)− fL ≤ τ (f (x0)− fL) ,

where fL is the best function value achieved by any s ∈ S .
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Numerical Results

Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ α
}∣∣∣∣

• Note that we are using the true function value f , not the observed f̄ .

• Since the noise is stochastic, each solver is run 10 times per problem.
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Numerical Results

Performance Profile
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Numerical Results

Current Work

• Generalizing results to ensure a practical algorithm converges.
◦ For example, not requiring α-probabilistically κ-fully linear models every

iteration.

• Smartly constructing α-probabilistically κ-fully linear models.
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